
2017 22nd IEEE European Test Symposium (ETS)

Online Profiling for Cluster-Specific Variable Rate

Refreshing in High-Density DRAM Systems

Rasool Sharifi, Zainalabedin Navabi
School of Electrical and Computer Engineering

University of Tehran, Iran
{ab.sharifi,navabi}@ut.ac.ir

Abstract- Multi-rate refresh techniques are among the
methods that use non-uniformity in retention time of DRAM cells
to reduce the DRAM refresh overheads. Unfortunately, retention
time of some DRAM cells may change unpredictably over time
due to variable retention time (VRT). In this paper, we propose an
Online ProfIler that divides DRAM cells into clusters and
proactively tests and measures retention time of each cluster over
time. The Online ProfIler decides on increasing refresh period of
a cluster based on a measured retention time, where this
retention time has passed all tests of different data sets. Also, for
ensuring maximum data integrity, the Online ProfIler reads the
entire memory periodically for correction of possible errors. We
show that our proposed mechanism, that uses cluster-specific
variable rate refreshing, can provide reliable operation while
reducing refresh overhead of the performance by 6%, 13%, and
23%, and Energy-Delay Product (EDP) by 7%, 13%, and 27%
for 32GB, 64GB, and 128GB DRAM modules, respectively.

Keywords-Dynamic Random Access Memory, Online
ProfIler, Variable Retention Time, Memory Scrubbing

I. INTRODUCTION

Dynamic Random Access Memories (DRAMs) are widely
used in most of today modem computer systems as main memory
because of their high densities. Each bit in a DRAM consists of
only one access transistor and one small capacitor. Leakage
currents cause the stored data to be lost over time. Therefore,
DRAM cells need to be refreshed periodically to retain their data.
As density of DRAM increases, more cells need to be refreshed
causing significant degradation in performance and waste of
energy. For example, refreshing in a 32 Gb chip could result in
25% and 30% of performance and power overheads, respectively
[1].

Refresh period, the time interval in which all of the cells
should be refreshed, is typically 64ms for modem DRAMs.
Despite the fact that cells in a DRAM are refreshed at such a high
rate, the majority of cells could retain their data for much longer
times. For example, [2] has shown that 99.7% of cells could
retain their data for longer than 1 second even at high
temperatures. Many recent works take advantage of this fact and
try to reduce refresh overheads by tracking weak cells [3]. Multi­
rate refresh mechanisms are among methods which exploit this
property [3, 4] by refreshing cells with different refresh rates.

978-1-5090-5457-2/17/$31.00 ©2017 IEEE

This is made possible by identifying rows with weaker cells and
refreshing them with higher rates, and rows with stronger cells at
lower rates. A common aspect of all these methods is that there is
an accurate profiler that can accurately measure or profile
retention time of cells in a limited time. However, profiling the
retention time of cells in a short period of time could be
extremely challenging, as the same cell may show different
retention times over the time. This property which is called
Variable Retention Time (VRT) causes some DRAM cells to
transition between different retention times at different points in
time. More importantly, as shown in [5] some VRT cells tend to
stay in their high retention time state longer than the time they
remain at the low state. In fact, this type of VR T cells are very
hard to fmd even after hours of exhaustive testing. Therefore,
changing refresh rates of rows without considering the effects of
VRT cells could result in a large number of intermittent retention
failures.

In this paper, we propose, present, and evaluate an online
profiler. We show that instead of a simple offline retention time
profiling, an alternative approach is to detect and mitigate effects
of retention time variations in the field, during the operation of
DRAM in the system. In this case, the memory controller is
responsible for proactive testing of cells retention time and
updating the refresh rate of clusters according to the test results
over time. An online pro filer, in order to be effective, needs to
meet two essential requirements. First, it requires the inclusion of
a kind of feedback for protecting data integrity against transition
of VRT cells to lower retention time states and temporal
temperature fluctuations. For this purpose, a scrubber that is
playing the role of the required feedback, reads and checks the
entire memory periodically for finding and correcting potential
errors caused by the variable refresh rate. Second, such a system
while running in the background, should be able to give an
accurate profile of retention time of cells with minimum effect on
the performance and power of the overall memory system. As a
result, scheduling of the memory scrubbing process at high rates
of scrubbing for maximum reliability is crucial.

The rest of this paper is organized as follows: Section 2
provides background information and motivation. Section 3
introduces and describes different components of our proposed
system. Section 4 shows the evaluation methodology and
discusses the results and Section 5 concludes.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on December 27,2020 at 04:58:27 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND AND RELATED WROK

A. Background

1) DRAM Refresh and VRT
Ideally, a DRAM cell should retain charge on its capacitor for a

long time. However, because of various sources of leakage it loses its
charge over the time. To maintain data integrity, DRAM cells are
refreshed, periodically. The variable retention time phenomenon is not
a new issue for DRAM devices. Fluctuations in the leakage current
caused by the traps results in uncertainty in the retention time of cells
and cause a phenomenon called Variable Retention Time. Figure 1
shows cells distribution for average hold time of minimum and
maximum retention time states for two DRAMs. Both cells in this
figure show two categories for VRT cells that constitutes the majority
of existing cells. One with high average hold-time for maximum
retention state (near vertical axis), and the other with high average
hold-time for minimum retention state (near horizontal axis). The cells
closer to vertical axis spend a short period of time in the low retention
state and a high period of time in the high retention state.

2) Temperature Effect on Retention Time and VRT
Prior works have demonstrated that the retention time of cells

decrease exponentially as temperature increases. In fact, 10°C
increase in temperature results in approximately 45% decrease in
retention time of DRAM cells [6]. Besides, as shown in [7], average
hold-time of minimum and maximum retention time states depend
exponentially on the temperature.

3) Multi-Rate Refresh Methods
It is found that the retention time distribution consists of tail

distribution and main distribution. The tail distribution constitutes
only a small number of cells. Therefore, most of the cells can be
refreshed at lower rates despite the fact that all rows in DRAM are
refreshed every 64ms. Taking advantage of this fact, prior works, e.g.,
[3, 4], reduce performance and power overheads of DRAM refresh
by tracking the rows with higher retention time cells and refresh them
with lower rates. They assume that there is an accurate system-level
profiling mechanism for measuring retention time of cells. Although,
profiling the retention time of cells at system boot may help to detect
many retention time failures, still as shown comprehensively in [5],
even after a long period of test, e.g., 24 hours, a large fraction ofVRT
cells may not be detected.

B. Related Work

Several approaches have been proposed to reduce refresh
overheads on the performance and power in DRAMs. One
approach is to exploit non-uniformity in the retention time of
DRAM cells. Multi-rate refresh mechanisms, e.g., [3, 4], group
rows into different bins according to their weakest cells and apply
a lower refresh rate to bins with high retention time rows.
However, AVATAR [I] is the only VRT-aware multi-rate refresh
scheme that considers the effect of VRT cells on the data
integrity. Nonetheless, although AVATAR considers VRT, it
cannot tolerates temporal temperature variations. RAPID [4] is a
software approach which favor longer-retention pages over
shorter-retention pages when allocating DRAM pages. Although
it includes online testing, still because it does not employ any
feedback, it cannot tolerates errors caused by the VRT cells.
RAIDR [3] groups DRAM rows into retention time bins and
applies a different refresh rate to each bin. A second approach,
involves the use of error-correction codes (ECC) for tolerating
errors. A third approach, relies on software hints on the
susceptibility of program data to the errors and decreasing the

Fig. 1 Average Hold Times ofeells for two different DRAM
modules [5]

refresh rate of DRAM for non-critical or invalid regions. Table I
compares our proposed method with three other methods in
different aspects.

TABLE!. COMPARISON BETWEEN PREVIOUS WORKS AND OUR WORK

Online Sensitive to Refresh
Ref. VRT Reliability Scalability Overhead Testing Aware VRT

variations Reduction

RAIDR[3] X X Low High X High
AVATAR[I] X � High Low X Medium
RAPID[4] X X Medium Medium X High
Our Work � � High Low � Medium

III. PROPOSED ONLINE PROFILER

An alternative approach for unreliable traditional testing at
system boot-up in multi-rate refresh methods is an online profiler
which is in charge of testing and measuring the retention time of
cells in the background, while the system is running and the
memory is in use. The online profiler should be accurate as much
as possible for ensuring maximum data integrity. Also, it should
have a minimum overhead on the performance.

Figure 2 illustrate the block diagram of our proposed Online
Profiling system which become part of the memory controller. As
shown, the components of the online profiler consisting of Tester,
Scrubber, and Refresh Look up Table (RLUT) are responsible for
determining the refresh rate of DRAM. The Tester monitors the
request queue and new requests from Last Level Cache (LLC).
Using these and other parameters, the Tester and Scrubber test the
memory and update the RLUT with new refresh rates. Memory
controller issues new refresh commands whenever the RLUT
sends a refresh sigual. The following subsections explain each
component of the online profiler in details. The proposed method
is implemented and evaluated in a cycle accurate memory
controller simulator.

A. Online Tester

1) Cluster Testing
The online tester is in charge of testing the retention time of

clusters and updating the refresh rates in the RLUT as shown in
algorithm I. The online pro filer partitions the DRAM into a
number of clusters determined by N. Each cluster contains a
number of successive rows and is refreshed with respect to its
refresh rate in the RLUT. Initially, all clusters are refreshed at the
nominal rate, i.e., every 64ms (line I).

At each round of test, the online tester selects a number of
clusters using ClusterSelector based on the size of ClustersBuffer
(BS), which is a temporary storage for the valid data of the

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on December 27,2020 at 04:58:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 2 Overall overview of the controller with proposed online profiler

clusters, and size of each cluster (CS). The ClusterSelector selects
a number of candidate clusters which have the highest refresh rate
in the RLUT, and monitors each cluster for two times of its
current refresh period, and eventually selects the clusters for
testing, which have no recent request for this period of time. This
will help to minimize the effect of testing on the performance of
the system. Next, the clusters which are selected by the
ClusterSelector will be buffered in ClustersBuffer to be tested for
twice of their current refresh periods in the RLUT (line 6, IS).
After the test is done, test data are read and checked for errors and
original data are recovered from ClustersBuffer (line 9-20).

While the selected clusters are under the test, the online tester
also monitors new requests coming to the memory controller, and
if there is a new request for one of the selected clusters, the online
tester drops the test and recovers the original data into the DRAM
array, and lets the memory controller serve the request to prevent
starvation (line 4-S).

An important parameter in the proposed method is the size of
each cluster, i.e., CS. On the one hand, as more rows are grouped
into a cluster, more weak cells are included and as a result,
possibility of reducing refresh rate for the cluster is reduced.
Also, a larger cluster size impose more performance overhead
when data should be transferred between DRAM and the
ClustersBuffer. On the other hand, if the cluster size is chosen to
be very small, hardware overhead of the RLUT and the online
tester is increased and could impose high overhead on the power.
As a result, a trade-off should be considered for considering the
size of each cluster.

2) Updating the RLUT
For considering the effect of Data Pattern Dependency (DPD)

and VRT, a cluster refresh period is increased and updated in the
RLUT only after the cluster is tested by a number of different
patterns determined by the Nrt and no error is reported (line 11-
12). For maximum coverage, different data patterns can be used
as the test data (e.g., zero, one, ten, five and random) [5]. If any
error is observed with one of the test data patterns, the online
tester halves the refresh period of cluster in the RLUT (line 14).
Note that a cluster is tested with different data patterns at long
intervals. This results in higher coverage in detection of VRT
cells which stay in their high retention time state for a long period
of time. The online tester repeats these steps until all clusters are
tested for twice of their present refresh time in the RLUT which
leads testing to be done only at granularity of 12Sms, 256ms,
512ms, 1024ms, 204Sms, etc. Increasing the refresh time of
clusters continues until the maximum possible refresh period for

each cluster is reached. Two reasons may stop the online tester
from increasing a cluster refresh time: 1) reaching the maximum
static refresh time determined by the retention time of the
weakest cell in the cluster and 2) encountering a VRT cell which
is in its low retention time state.

3) Advantages
An important aspect of our proposed test mechanism is that it

tries to test clusters for high refresh periods as much as possible
which has three advantages. First, since we are testing the clusters
for high retention times, for the multi-state VRT cells, the chance
of finding cells with low retention times increases. Second, the
Tester can increase refresh period of a cluster faster in the case
that the cluster do not have any VRT cell. Third, because of
longer intervals between the tests, the online tester has much less
overheads on the system performance and power.

Another advantage of our proposed method is that it is
flexible. Therefore, various test strategies can be easily
implemented for different requirements. For example, one can
simply enhance the data integrity by putting a guard-band on the
refresh period of the clusters. This is done by testing a cluster for
retention time of 256ms but increasing its refresh period to 12Sms
if no error is detected.

Algorithm 1 Testing Process

Require: required round of tests (Nrt), number of clusters (N),

ClustersBuffer size (BS), cluster size (CS)

1: Set RLUT [0: N-l] to 64ms; SetPassedTests [0: N-l] to Nrt
2: while ClustersBujJer * I/) do
3: for j in ClustersBujJer [0: BS/CS-1] then
4: if RequestQueue* I/) and request E ClustersBujJer[j] then
5: drop the test for the ClustersBujJer[j] and recover the data;
6: ClusterSelectorO l/call the for finding another candidate cluster;
7: continue;
8: end if;
9: if ClustersBujJer[j] test is done = True then
10: if#ERROR = 0 then
11: PassedTests[n] � PassedTests[n]-l; lin is the cluster index
12: if PassedTests[n] = 0 then RLUT[nJ� RLUT[nJ x 2; end if;
13: else then

14: RLUT[n]�
RLU;[n1;

15: recover the data for the ClustersBujJer[j];
16: end if;
17: recover the valid data;
18: ClusterSelectorO Ilcall the for finding another candidate cluster
19: end if; end for; end while;

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on December 27,2020 at 04:58:27 UTC from IEEE Xplore. Restrictions apply.

B. Scrubber

Online testing of retention time of cells allows us to be more
aware of important factors that are completely random, e.g., VRT,
or are dependent on the environment conditions, e.g., temperature.
Online testing of refresh time though necessary, yet is not enough
for ensuring data integrity and can result in high error rate.
Therefore, we need a kind of feedback for checking whether any
error has occurred due to changes in the retention time of cells in
the clusters. One way to implement this feedback into the system
is by applying the memory scrubbing [8], which periodically
traverses the entire memory and checks for potential errors. In our
work, we use memory scrubbing to read rows and check them for
errors using ECC. If any error has occurred, ECC corrects it, and
in addition, the memory controller sets refresh period of the
cluster with error to its initial value. As a result, accumulation of
errors which may result in uncorrectable errors and system failure
is prevented. The refresh period of clusters may be risen again
only by the online tester.

1) Scheduling Scrubbing Process
An important parameter in scrubbing is the scrubbing period.

Although, the scrubber needs to be as fast as possible to find any
error before the accumulation of errors. Still, it should not impose
an overhead on the performance and power of the system.

For scheduling purpose, we consider that many applications
have compute and memory phases [9]. To reduce the impact of
the scrubbing on the performance, the scrubber tries to predict
presence of memory idle time (compute period) by monitoring
the memory controller request queue. Algorithm 2 shows one
period of our proposed scrubbing method. The first parameter is
the time within which the entire memory has to be scrubbed. This
time is in the order of tens of seconds, e.g., 90 seconds. The
second parameter is the time it takes for one complete round of
memory scrubbing. This time that is distributed in the first time
period is in the order of several hundreds of milliseconds, e.g.,
800ms. Both times are expressed in terms of number of memory
cycles, i.e., NSF (scrubbing period), and Nrs (round of scrubbing).

Algorithm 2 Scrubbing Process

Require: scrubbing period (N,p), round of scrubbing (N,,)
1: Set TotalElpasedCycles to 0; Set a to 0;
2: while TotalElpasedCycles '" N'Pdo
3: TotalElpasedCycles TotalElpasedCycles + 1;
4: if RequestQueue = 0 then QueueEmptyCount QueueEmptyCount+l;
5: else QueueEmptyCount 0;
6: end if;
7: if QueueEmptyCount is greater than Threshold then
8: Set StartScrubFlag True;
9: CountScrub CountScrub + 1;
10: else
11: StartScrubFlag False;
12: � = CoefCalc (N'P,N,,,TotaIElpasedCycles,CountScrub);

13: Threshold = Threshold + (�-a) X Threshold' 100 I

14: Replace a by�;
15: end if;
16: end while;
17: function CoefCalc (N,p, Nrs, TotalElpasedCycles, CountScrub)
18: ElapsedTimePercent = TotalElpasedCycles / N'P;
19: WorkDonePercent = (CountScrub / N,,);
20: � = WorkDonePercent / ElapsedTimePercent;
21: Return �;
22: end function

For implementation of this algorithm, several variables are
required. TotalElpasedCycles counts the number of elapsed cycle

from the beginning of the scrub period and is set to zero when a
new round of the scrub begins. The other important variable is the
Threshold time that is the wait time for starting scrubbing before
scrubbing session begins. This wait time resets to zero if there is a
memory request within Threshold. Our simulations reveal that
that after Threshold elapses, we have an enough amount of time
to perform scrubbing before the next memory request. Third
variable is CountScrub that keeps count of number of scrubbings.
When this variable reaches Nrs, a scrubbing round is completed.

In the course of the execution of the algorithm 2, when the
QueueEmptyCount counter exceeds Threshold (line 7), the
StartScrubFlag is set and the CountScrub is increased by the
number of issued scrub requests. With a new memory request to
the memory controller, the scrubber stops its operation and waits
for another overflowing start.

Due to dependence of the Threshold value on the memory
demand, the scrubber tries to emend Threshold by calling the
Cae/Calc (line 17) function. This function returns � that is a
measure of remaining scrubbing to be done to complete necessary
scrubbing period. A high value for � shows that the scrubbing
process is going well, and the scrubber can get relaxed about
finishing the scrubbing process, thus increases the Threshold.
Otherwise, for a low �, the scrubber finds out that the memory
demand is high and Threshold value should be lowered to get the
scrubbing job done in time. In addition, due to smaller amount of
free time between requests in memory-intensive workloads,
smaller number of successive scrub requests are sent to the
memory for reducing the performance overhead of the scrubbing.

C. Hardware Implementation of RLUT

Figure 3 shows the overall micro-architecture of proposed
RLUT which is a kind of frequency divider and generates refresh
signals to be issued by the memory controller. The value of n is
determined by the number of granularities of refresh periods. For
example, eight refresh granularities (64ms, l28ms, 256ms to
8192ms) can be encoded with 3 bits (n = 3). The address size of
the RLUT equals to the number of clusters. A system with 32K
clusters and eight refresh granularities needs a 96KB memory.

The RLUT sweeps the entire clusters refresh-memory every
64ms. When a cluster refresh period is read from the memory it is
decoded into an m bits binary number by the Look up Table and
the multiplexer selects one bit out of the m bits binary. The
memory controller issues a refresh command for the cluster if the
output of the multiplexer is one. Otherwise, it bypasses the
refresh command for the cluster. The value of m is determined by
the highest refresh period. For example, a maximum refresh
period of 8192ms needs 128 bits (128*64ms = 8192ms).

addr

Cluster Add�
in

CI�_rs
l'Iefrelhl'ertod

Memory

eLK Divider}----o
elk Rd£

mblfs
11111111··111111111111
10101010 .. 101010101010
10001000 ..

I'
...

••

I
� mL

Bit_Counte
Log2(m}

,_J�UX

�n� 1/64ms Refresh Signal

Fig. 3 Hardware implementation of the RLUT

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on December 27,2020 at 04:58:27 UTC from IEEE Xplore. Restrictions apply.

IV. RESULTS

A. Simulation Setup

For analyzing the impact of our proposed method on the
performance and power of a DDR3 memory module, a similar
retention time error model as in [10] is employed in DRAMSim2
[11]. First, for considering effects of systematic process variation
on the retention time of neighboring cells, a multivariate normal
distribution with spherical spatial correlation structure is
employed for each chip in R language. In our simulations, we use
Continuous Time Markov Chains (CTMCs) for modeling two and
multi-state VRT cells. We form the transition rate matrix of VRT
cells using values provided by [5]. In this model, each cell spends
a random amount of time T, which follows an exponential
distribution in each state, and then it moves to the other states.
Random paths are generated at 45°(, 65°(and 85°C using Prism
[12]. At the beginning of simulation, line address of each VRT
cell is selected by generating random line addresses with a
uniform distributed random number generator to consider the fact
that VRT cells are randomly scattered across the chips. For
evaluation of the performance and power of our proposed
method, we use Gem5 [13], a cycle accurate full system simulator
for the x86-64 architecture with integrated DRAMSirn2 [11].
Table 2 shows configuration of our simulated system. We use
multi-programmed workloads constructed from the SPEC
CPU2006 benchmarks. Workloads are composed based on the
memory intensity and row-buffer hit rate as determined in
[14].CACTI [15] is used for calculation of the power in the
RLUT and chip buffers.

TABLE II.

Component

Processor

Per Core $

Memory Controller

DRAM Organization

EVALUATION SYSTEM CONFIGURATION

Specification
X86, 03 cores, 8-core, 3 GHz
64 KB Ll-I$ per core, 64 KB Ll-D$ per
core, 4MB L2 shared (8 way), LRU
FR-FCFS scheduling, open-page policy, 32
entries read queue, 32 entries write queue
2 channel, 2 ranks/channel, 8 banks/rank,
Timings: DDR3-l600

B. Effective Refresh Saving

Figure 4 shows the number of refresh commands issued by
the memory controller in our proposed method, and in the normal
situation for a time period of 280 minutes in 32 GB DRAM
module. Each cluster contains sixteen 2KB rows, and a 64KB
buffer is assumed for each DRAM chip. Therefore, two (64/32=4)
clusters can be tested simultaneously for different refresh periods.
Also, each cluster is tested with five different data patterns which
give the maximum coverage [5]. As shown, after a period of time
the system reaches to its stable state. In the stable state, the
number of cells that get lower refresh rates by the online tester
balances with the number of rows that get higher refresh rates by
the scrubber.

The number of refresh commands that the memory controller
issues in the stable state determines the total refresh power and
performance overheads that can be mitigated. This settling value
depends on four different factors: 1) the static retention time
distribution of the cells, 2) hold-time distribution of the VRT cells
in the high and low retention states, 3) temperature, and 4) the
rate at which the online tester is testing the DRAM.

The point at which the online tester cannot increase the

Fig. 4 Number of issued refresh commands in 280 minutes at three
different temperatures for two 32 GB DRAM modules normalized to the
baseline system. Scrubbing Time=90s, Number of Clusters = 32K,
Cluster Size = 32KB

039
s

SO 49
_ l1li. �� .8 037

" � 035
� 033
; 031

8 029
g 027
<!! 02S _4--+--__ --+--__ --+--__ -___
� 1000 1014 1028 1042 10,6 1070 108� 1098 1112 1126 1140

Time(s)

� Q:
44 � 43 !! 42 �
!� -! 39 � 38
37 36 3,

Fig. 5 Transient response of the system to the variations in the temperature

for a 32 GB DRAM. Scrubbing Time=90s, Number of Clusters = 32K,

Cluster Size=32KB

refresh period any further depends on the main and tail retention
time distribution of the cells, and spatial correlation between the
retention times of neighboring cells. As the weak cells, which
belong to the tail distribution scatter more sparsely on the chip,
fewer number of clusters can be refreshed with lower rates.

As shown in Fig. 4, the system reaches its stable state in a
shorter time at higher temperatures. This can be explained by
considering the fact that at higher temperatures, tests are done at
higher rates because of lower retention time of cells and smaller
intervals between tests. In addition, VRT cells have a higher rate
of transition between retention time states. As a result, cells with
VRT can be found more easily. Also, figure 4 shows more
instability in the number of refresh commands at higher
temperatures, e.g., 85 DC. This is due to higher transition rate of
the VRT cells at high temperatures.

C. Transient Response

Figure 5 shows transient response of the system to the
fluctuations in the temperature. Lee et al. measured the DRAM
ambient temperature in a server cluster and desktop system
running a memory-intensive benchmark, and found that
temperature never exceeds 34°C and 50°C, and never changing by
more than 0.1 per second [16]. Therefore, temperature variation
rate and interval of 0.1 per second and 35°C to 50°C are selected
for our experiments, respectively.

As shown, the scrubber in the role of a feedback detects
errors and increases refresh rate to prevent accumulation of errors
which could result in uncorrectable errors and system failure.
Scrubbing period determines how fast the system can respond to
the transient disturbances.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on December 27,2020 at 04:58:27 UTC from IEEE Xplore. Restrictions apply.

1.4
.45 ·c .65 ·c .85 ·C • Standard Mode

� "
1.2 " "

;; ;> 1
:: "-
E 0.8
"
� 0.6

"
0.4 t:

<@
0.2 " "-

o
32GB (8Gb del'ces) 64GB (16Gb devices) 128GB (32Gb d",ices)

Fig. 6 Perfonnance improvement for three different modules at 45°(,

65°(and 85°C. Scrubbing Time = 90s

Fig. 7 The Energy-Delay Product comparison between the proposed
method and the A VAT AR at 45°C

D. Power and Performance Evaluation

Figure 6 shows perfonnance improvement of our proposed
method relative to the baseline system which employs JEDEC­
specified 64ms refresh, and is protected by a SECDED ECC. Our
proposed method improves the perfonnance by 6%, 13%, and 23% at
45°C for 32GB, 64GB, and 128GB sizes, respectively.

The total energy for refreshing an 8GB DIMM once is
approximately I.ImJ, whereas the energy for one round of scrubbing
is approximately 16ImJ [1]. However, in the worst case (scrub period
of90 seconds) the scrub energy is consumed less frequently (64ms vs.

90s) than the refresh energy. Figure 7 compares the Energy-Delay
Product (EDP) of our proposed method with AVATAR-I, and No
Refresh cases. In the No Refresh case, EDP can be reduced by 10%,
18%, and 34% for 32GB, 64GB, and 128GB nodes, respectively.
Whereas, our proposed method reduces EDP by 7%, 13%, and 27%
at 32GB, 64GB, and 128GB nodes, respectively.

As expected, less power and perfonnance overhead of refresh can
be mitigated at higher temperatures due to lower retention time of the
DRAM cells and higher transition rate of the VRT cells. Also, for
ensuring high data integrity, scrubbing should be applied faster at
higher temperatures which result in less reduction in the refresh
overheads.

Fig. 6 Probability of occurring an uncorrectable error in a system
protected by a SECDEC (8B) ECC for a 32GB DRAM

E. Failure Rate Analysis

Figure 8 shows the probability of occurring an uncorrectable
errors wiili respect to the scrubbing period. We assume iliat ilie
VRT cells are randomly scattered throughout the memory [1], and
an uncorrectable error always result in system failure.

As shown, temperature can reduce reliability of the system by
four orders of magnitude even at a high rate of scrubbing (i.e., 90
seconds). As temperature rises, rate of transition to lower states
in cells with VRT increases and as a result, higher rate of error is
observed. Therefore, for more reliable operation, higher rate of
scrubbing is required.

Aliliough, scrubbing memory at high rates helps us to
increase reliability of the system, still not all the applications need
this much of reliability. In fact, some dedicated applications
refresh can be disabled wiili negligible impact on ilie perfonnance
[17].

V. CONCLUSSION

In this paper, we introduced an online profiler based on the
multi-rate refresh technique for reducing the refresh overhead on the
perfonnance and power in the presence of VRT cells and other
environment dependent variables. We proposed a heuristic approach
for reducing impact of the memory scrubbing on the perfonnance.
Our proposed online profiler consisting of the online tester and the
scrubber reduces refresh overhead on perfonnance by 6%, 13%, and
25%, and EDP by 13%, and 27% for 32GB, 64GB, and 128GB
DRAM modules, respectively.

REFERENCES

[1] M. K. Qureshi, et al.,"AVATAR: A Variable-Retention-Time (VRT)
Aware Refresh for DRAM Systems," DSN, vol. 2, no. 4Gb, p. 20, 2015.

[2] S. Baek, et al.,"Refresh Now and Then," IEEE Trans. Comput., vol. PP,
no. 99, p. 1,2013.

[3] J. Liu, et al.,"RAIDR: Retention-aware intelligent DRAM refresh," in
ISCA, 2012, pp. 1-12.

[4] R. K. Venkatesan, et al.,"Retention-aware placement in DRAM (RAPID):
Software methods for quasi-non-volatile DRAM," in HPCA, 2006, pp.
155-165.

[5] S. Khan, et al.,"The efficacy of error mitigation techniques for DRAM
retention failures," SIGMETRICS, pp. 519-532, 2014.

[6] J. Liu, et al.,"An experimental study of data retention behavior in modem
DRAM devices: Implications for retention time profiling mechanisms,"
ISCA, vol. 41, no. 3, p. 60, 2013.

[7] H. Kim, et al.,"Characterization of the variable retention time in dynamic
random access memory," IEEE Trans. Electron Devices, vol. 58, no. 9,
pp. 2952-2958, 201 1.

[8] S. S. Mukherjee, et al.,"Cache scrubbing in microprocessors: Myth or
necessity?," in PRDC, 2004, pp. 37-42.

[9] Y. K. Y. Kim, et al.,"ATLAS: A scalable and high-performance
scheduling algorithm for multiple memory controllers," HPCA, 2010.

[10] C. Weis, et al.,"Retention time measurements and modelling of bit error
rates of WIDE I/O DRAM in MPSoCs," in DATE, 2015, pp. 495-500.

[11] P. Rosenfeld, et al.,"DRAMSirn2: A cycle accurate memory system
simulator," Com put. Archil. Lett., vol. 10, no. 1, pp. 16-19,201 1.

[12] M. Kwiatkowska, et al.,"PRISM: Probabilistic symbolic model
checker," Springer, 2002, pp. 200-204 .

[13] N. Binkert, et al.,"The gem5 simulator," ACM SIGARCH Comput.
Archil. News, vol. 39, no. 2, pp. 1-7,201 1.

[14] M. K. Jeong, et al.,"Balancing DRAM locality and parallelism in shared
memory CMP systems," HPCA, pp. 53--64,2012.

[15] S. Thoziyoor, et al.,"Cacti 5.3," HP Lab. Palo Alto, CA,2008.
[16] D. Lee, et al.,"Adaptive-latency DRAM: Optimizing DRAM timing for

the common-case," in HPCA, 2015,2015, pp. 489-50 1.
[17] M. Jung, et al.,"Omitting Refresh: A Case Study for Commodity and

Wide I/O DRAMs," in MEMSYS, 2015, pp. 85-91.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on December 27,2020 at 04:58:27 UTC from IEEE Xplore. Restrictions apply.

