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Abstract- Multi-rate refresh techniques are among the 
methods that use non-uniformity in retention time of DRAM cells 
to reduce the DRAM refresh overheads. Unfortunately, retention 
time of some DRAM cells may change unpredictably over time 
due to variable retention time (VRT). In this paper, we propose an 
Online ProfIler that divides DRAM cells into clusters and 
proactively tests and measures retention time of each cluster over 
time. The Online ProfIler decides on increasing refresh period of 
a cluster based on a measured retention time, where this 
retention time has passed all tests of different data sets. Also, for 
ensuring maximum data integrity, the Online ProfIler reads the 
entire memory periodically for correction of possible errors. We 
show that our proposed mechanism, that uses cluster-specific 
variable rate refreshing, can provide reliable operation while 
reducing refresh overhead of the performance by 6%, 13%, and 
23%, and Energy-Delay Product (EDP) by 7%, 13%, and 27% 
for 32GB, 64GB, and 128GB DRAM modules, respectively. 

Keywords-Dynamic Random Access Memory, Online 
ProfIler, Variable Retention Time, Memory Scrubbing 

I. INTRODUCTION 

Dynamic Random Access Memories (DRAMs) are widely 
used in most of today modem computer systems as main memory 
because of their high densities. Each bit in a DRAM consists of 
only one access transistor and one small capacitor. Leakage 
currents cause the stored data to be lost over time. Therefore, 
DRAM cells need to be refreshed periodically to retain their data. 
As density of DRAM increases, more cells need to be refreshed 
causing significant degradation in performance and waste of 
energy. For example, refreshing in a 32 Gb chip could result in 
25% and 30% of performance and power overheads, respectively 
[1]. 

Refresh period, the time interval in which all of the cells 
should be refreshed, is typically 64ms for modem DRAMs. 
Despite the fact that cells in a DRAM are refreshed at such a high 
rate, the majority of cells could retain their data for much longer 
times. For example, [2] has shown that 99.7% of cells could 
retain their data for longer than 1 second even at high 
temperatures. Many recent works take advantage of this fact and 
try to reduce refresh overheads by tracking weak cells [3]. Multi­
rate refresh mechanisms are among methods which exploit this 
property [3, 4] by refreshing cells with different refresh rates. 
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This is made possible by identifying rows with weaker cells and 
refreshing them with higher rates, and rows with stronger cells at 
lower rates. A common aspect of all these methods is that there is 
an accurate profiler that can accurately measure or profile 
retention time of cells in a limited time. However, profiling the 
retention time of cells in a short period of time could be 
extremely challenging, as the same cell may show different 
retention times over the time. This property which is called 
Variable Retention Time (VRT) causes some DRAM cells to 
transition between different retention times at different points in 
time. More importantly, as shown in [5] some VRT cells tend to 
stay in their high retention time state longer than the time they 
remain at the low state. In fact, this type of VR T cells are very 
hard to fmd even after hours of exhaustive testing. Therefore, 
changing refresh rates of rows without considering the effects of 
VRT cells could result in a large number of intermittent retention 
failures. 

In this paper, we propose, present, and evaluate an online 
profiler. We show that instead of a simple offline retention time 
profiling, an alternative approach is to detect and mitigate effects 
of retention time variations in the field, during the operation of 
DRAM in the system. In this case, the memory controller is 
responsible for proactive testing of cells retention time and 
updating the refresh rate of clusters according to the test results 
over time. An online pro filer, in order to be effective, needs to 
meet two essential requirements. First, it requires the inclusion of 
a kind of feedback for protecting data integrity against transition 
of VRT cells to lower retention time states and temporal 
temperature fluctuations. For this purpose, a scrubber that is 
playing the role of the required feedback, reads and checks the 
entire memory periodically for finding and correcting potential 
errors caused by the variable refresh rate. Second, such a system 
while running in the background, should be able to give an 
accurate profile of retention time of cells with minimum effect on 
the performance and power of the overall memory system. As a 
result, scheduling of the memory scrubbing process at high rates 
of scrubbing for maximum reliability is crucial. 

The rest of this paper is organized as follows: Section 2 
provides background information and motivation. Section 3 
introduces and describes different components of our proposed 
system. Section 4 shows the evaluation methodology and 
discusses the results and Section 5 concludes. 
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II. BACKGROUND AND RELATED WROK 

A. Background 

1) DRAM Refresh and VRT 
Ideally, a DRAM cell should retain charge on its capacitor for a 

long time. However, because of various sources of leakage it loses its 
charge over the time. To maintain data integrity, DRAM cells are 
refreshed, periodically. The variable retention time phenomenon is not 
a new issue for DRAM devices. Fluctuations in the leakage current 
caused by the traps results in uncertainty in the retention time of cells 
and cause a phenomenon called Variable Retention Time. Figure 1 
shows cells distribution for average hold time of minimum and 
maximum retention time states for two DRAMs. Both cells in this 
figure show two categories for VRT cells that constitutes the majority 
of existing cells. One with high average hold-time for maximum 
retention state (near vertical axis), and the other with high average 
hold-time for minimum retention state (near horizontal axis). The cells 
closer to vertical axis spend a short period of time in the low retention 
state and a high period of time in the high retention state. 

2) Temperature Effect on Retention Time and VRT 
Prior works have demonstrated that the retention time of cells 

decrease exponentially as temperature increases. In fact, 10°C 
increase in temperature results in approximately 45% decrease in 
retention time of DRAM cells [6]. Besides, as shown in [7], average 
hold-time of minimum and maximum retention time states depend 
exponentially on the temperature. 

3) Multi-Rate Refresh Methods 
It is found that the retention time distribution consists of tail 

distribution and main distribution. The tail distribution constitutes 
only a small number of cells. Therefore, most of the cells can be 
refreshed at lower rates despite the fact that all rows in DRAM are 
refreshed every 64ms. Taking advantage of this fact, prior works, e.g., 
[3, 4], reduce performance and power overheads of DRAM refresh 
by tracking the rows with higher retention time cells and refresh them 
with lower rates. They assume that there is an accurate system-level 
profiling mechanism for measuring retention time of cells. Although, 
profiling the retention time of cells at system boot may help to detect 
many retention time failures, still as shown comprehensively in [5], 
even after a long period of test, e.g., 24 hours, a large fraction ofVRT 
cells may not be detected. 

B. Related Work 

Several approaches have been proposed to reduce refresh 
overheads on the performance and power in DRAMs. One 
approach is to exploit non-uniformity in the retention time of 
DRAM cells. Multi-rate refresh mechanisms, e.g., [3, 4], group 
rows into different bins according to their weakest cells and apply 
a lower refresh rate to bins with high retention time rows. 
However, AVATAR [I] is the only VRT-aware multi-rate refresh 
scheme that considers the effect of VRT cells on the data 
integrity. Nonetheless, although AVATAR considers VRT, it 
cannot tolerates temporal temperature variations. RAPID [4] is a 
software approach which favor longer-retention pages over 
shorter-retention pages when allocating DRAM pages. Although 
it includes online testing, still because it does not employ any 
feedback, it cannot tolerates errors caused by the VRT cells. 
RAIDR [3] groups DRAM rows into retention time bins and 
applies a different refresh rate to each bin. A second approach, 
involves the use of error-correction codes (ECC) for tolerating 
errors. A third approach, relies on software hints on the 
susceptibility of program data to the errors and decreasing the 

Fig. 1 Average Hold Times ofeells for two different DRAM 
modules [5] 

refresh rate of DRAM for non-critical or invalid regions. Table I 
compares our proposed method with three other methods in 
different aspects. 

TABLE!. COMPARISON BETWEEN PREVIOUS WORKS AND OUR WORK 

Online Sensitive to Refresh 
Ref. VRT Reliability Scalability Overhead Testing Aware VRT 

variations Reduction 

RAIDR[3] X X Low High X High 
AVATAR[I] X � High Low X Medium 
RAPID[4] X X Medium Medium X High 
Our Work � � High Low � Medium 

III. PROPOSED ONLINE PROFILER 

An alternative approach for unreliable traditional testing at 
system boot-up in multi-rate refresh methods is an online profiler 
which is in charge of testing and measuring the retention time of 
cells in the background, while the system is running and the 
memory is in use. The online profiler should be accurate as much 
as possible for ensuring maximum data integrity. Also, it should 
have a minimum overhead on the performance. 

Figure 2 illustrate the block diagram of our proposed Online 
Profiling system which become part of the memory controller. As 
shown, the components of the online profiler consisting of Tester, 
Scrubber, and Refresh Look up Table (RLUT) are responsible for 
determining the refresh rate of DRAM. The Tester monitors the 
request queue and new requests from Last Level Cache (LLC). 
Using these and other parameters, the Tester and Scrubber test the 
memory and update the RLUT with new refresh rates. Memory 
controller issues new refresh commands whenever the RLUT 
sends a refresh sigual. The following subsections explain each 
component of the online profiler in details. The proposed method 
is implemented and evaluated in a cycle accurate memory 
controller simulator. 

A. Online Tester 

1) Cluster Testing 
The online tester is in charge of testing the retention time of 

clusters and updating the refresh rates in the RLUT as shown in 
algorithm I. The online pro filer partitions the DRAM into a 
number of clusters determined by N. Each cluster contains a 
number of successive rows and is refreshed with respect to its 
refresh rate in the RLUT. Initially, all clusters are refreshed at the 
nominal rate, i.e., every 64ms (line I). 

At each round of test, the online tester selects a number of 
clusters using ClusterSelector based on the size of ClustersBuffer 
(BS), which is a temporary storage for the valid data of the 
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Fig. 2 Overall overview of the controller with proposed online profiler 

clusters, and size of each cluster (CS). The ClusterSelector selects 
a number of candidate clusters which have the highest refresh rate 
in the RLUT, and monitors each cluster for two times of its 
current refresh period, and eventually selects the clusters for 
testing, which have no recent request for this period of time. This 
will help to minimize the effect of testing on the performance of 
the system. Next, the clusters which are selected by the 
ClusterSelector will be buffered in ClustersBuffer to be tested for 
twice of their current refresh periods in the RLUT (line 6, IS). 
After the test is done, test data are read and checked for errors and 
original data are recovered from ClustersBuffer (line 9-20). 

While the selected clusters are under the test, the online tester 
also monitors new requests coming to the memory controller, and 
if there is a new request for one of the selected clusters, the online 
tester drops the test and recovers the original data into the DRAM 
array, and lets the memory controller serve the request to prevent 
starvation (line 4-S). 

An important parameter in the proposed method is the size of 
each cluster, i.e., CS. On the one hand, as more rows are grouped 
into a cluster, more weak cells are included and as a result, 
possibility of reducing refresh rate for the cluster is reduced. 
Also, a larger cluster size impose more performance overhead 
when data should be transferred between DRAM and the 
ClustersBuffer. On the other hand, if the cluster size is chosen to 
be very small, hardware overhead of the RLUT and the online 
tester is increased and could impose high overhead on the power. 
As a result, a trade-off should be considered for considering the 
size of each cluster. 

2) Updating the RLUT 
For considering the effect of Data Pattern Dependency (DPD) 

and VRT, a cluster refresh period is increased and updated in the 
RLUT only after the cluster is tested by a number of different 
patterns determined by the Nrt and no error is reported (line 11-
12). For maximum coverage, different data patterns can be used 
as the test data (e.g., zero, one, ten, five and random) [5]. If any 
error is observed with one of the test data patterns, the online 
tester halves the refresh period of cluster in the RLUT (line 14). 
Note that a cluster is tested with different data patterns at long 
intervals. This results in higher coverage in detection of VRT 
cells which stay in their high retention time state for a long period 
of time. The online tester repeats these steps until all clusters are 
tested for twice of their present refresh time in the RLUT which 
leads testing to be done only at granularity of 12Sms, 256ms, 
512ms, 1024ms, 204Sms, etc. Increasing the refresh time of 
clusters continues until the maximum possible refresh period for 

each cluster is reached. Two reasons may stop the online tester 
from increasing a cluster refresh time: 1) reaching the maximum 
static refresh time determined by the retention time of the 
weakest cell in the cluster and 2) encountering a VRT cell which 
is in its low retention time state. 

3) Advantages 
An important aspect of our proposed test mechanism is that it 

tries to test clusters for high refresh periods as much as possible 
which has three advantages. First, since we are testing the clusters 
for high retention times, for the multi-state VRT cells, the chance 
of finding cells with low retention times increases. Second, the 
Tester can increase refresh period of a cluster faster in the case 
that the cluster do not have any VRT cell. Third, because of 
longer intervals between the tests, the online tester has much less 
overheads on the system performance and power. 

Another advantage of our proposed method is that it is 
flexible. Therefore, various test strategies can be easily 
implemented for different requirements. For example, one can 
simply enhance the data integrity by putting a guard-band on the 
refresh period of the clusters. This is done by testing a cluster for 
retention time of 256ms but increasing its refresh period to 12Sms 
if no error is detected. 

Algorithm 1 Testing Process 

Require: required round of tests (Nrt), number of clusters (N), 

ClustersBuffer size (BS), cluster size (CS) 

1: Set RLUT [0: N-l] to 64ms; SetPassedTests [0: N-l] to Nrt 
2: while ClustersBujJer * I/) do 
3: for j in ClustersBujJer [0: BS/CS-1] then 
4: if RequestQueue* I/) and request E ClustersBujJer[j] then 
5: drop the test for the ClustersBujJer[j] and recover the data; 
6: ClusterSelectorO l/call the for finding another candidate cluster; 
7: continue; 
8: end if; 
9: if ClustersBujJer[j] test is done = True then 
10: if#ERROR = 0 then 
11: PassedTests[n] � PassedTests[n]-l; lin is the cluster index 
12: if PassedTests[n] = 0 then RLUT[nJ� RLUT[nJ x 2; end if; 
13: else then 

14: RLUT[n]� 
RLU;[n1; 

15: recover the data for the ClustersBujJer[j]; 
16: end if; 
17: recover the valid data; 
18: ClusterSelectorO Ilcall the for finding another candidate cluster 
19: end if; end for; end while; 
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B. Scrubber 

Online testing of retention time of cells allows us to be more 
aware of important factors that are completely random, e.g., VRT, 
or are dependent on the environment conditions, e.g., temperature. 
Online testing of refresh time though necessary, yet is not enough 
for ensuring data integrity and can result in high error rate. 
Therefore, we need a kind of feedback for checking whether any 
error has occurred due to changes in the retention time of cells in 
the clusters. One way to implement this feedback into the system 
is by applying the memory scrubbing [8], which periodically 
traverses the entire memory and checks for potential errors. In our 
work, we use memory scrubbing to read rows and check them for 
errors using ECC. If any error has occurred, ECC corrects it, and 
in addition, the memory controller sets refresh period of the 
cluster with error to its initial value. As a result, accumulation of 
errors which may result in uncorrectable errors and system failure 
is prevented. The refresh period of clusters may be risen again 
only by the online tester. 

1) Scheduling Scrubbing Process 
An important parameter in scrubbing is the scrubbing period. 

Although, the scrubber needs to be as fast as possible to find any 
error before the accumulation of errors. Still, it should not impose 
an overhead on the performance and power of the system. 

For scheduling purpose, we consider that many applications 
have compute and memory phases [9]. To reduce the impact of 
the scrubbing on the performance, the scrubber tries to predict 
presence of memory idle time (compute period) by monitoring 
the memory controller request queue. Algorithm 2 shows one 
period of our proposed scrubbing method. The first parameter is 
the time within which the entire memory has to be scrubbed. This 
time is in the order of tens of seconds, e.g., 90 seconds. The 
second parameter is the time it takes for one complete round of 
memory scrubbing. This time that is distributed in the first time 
period is in the order of several hundreds of milliseconds, e.g., 
800ms. Both times are expressed in terms of number of memory 
cycles, i.e., NSF (scrubbing period), and Nrs (round of scrubbing). 

Algorithm 2 Scrubbing Process 

Require: scrubbing period (N,p), round of scrubbing (N,,) 
1: Set TotalElpasedCycles to 0; Set a to 0; 
2: while TotalElpasedCycles '" N'Pdo 
3: TotalElpasedCycles .... TotalElpasedCycles + 1; 
4: if RequestQueue = 0 then QueueEmptyCount .... QueueEmptyCount+l; 
5: else QueueEmptyCount .... 0; 
6: end if; 
7: if QueueEmptyCount is greater than Threshold then 
8: Set StartScrubFlag True; 
9: CountScrub .... CountScrub + 1; 
10: else 
11: StartScrubFlag .... False; 
12: � = CoefCalc (N'P,N,,,TotaIElpasedCycles,CountScrub); 

13: Threshold = Threshold + (�-a) X Threshold' 100 I 

14: Replace a by�; 
15: end if; 
16: end while; 
17: function CoefCalc (N,p, Nrs, TotalElpasedCycles, CountScrub) 
18: ElapsedTimePercent = TotalElpasedCycles / N'P; 
19: WorkDonePercent = (CountScrub / N,,); 
20: � = WorkDonePercent / ElapsedTimePercent; 
21: Return �; 
22: end function 

For implementation of this algorithm, several variables are 
required. TotalElpasedCycles counts the number of elapsed cycle 

from the beginning of the scrub period and is set to zero when a 
new round of the scrub begins. The other important variable is the 
Threshold time that is the wait time for starting scrubbing before 
scrubbing session begins. This wait time resets to zero if there is a 
memory request within Threshold. Our simulations reveal that 
that after Threshold elapses, we have an enough amount of time 
to perform scrubbing before the next memory request. Third 
variable is CountScrub that keeps count of number of scrubbings. 
When this variable reaches Nrs, a scrubbing round is completed. 

In the course of the execution of the algorithm 2, when the 
QueueEmptyCount counter exceeds Threshold (line 7), the 
StartScrubFlag is set and the CountScrub is increased by the 
number of issued scrub requests. With a new memory request to 
the memory controller, the scrubber stops its operation and waits 
for another overflowing start. 

Due to dependence of the Threshold value on the memory 
demand, the scrubber tries to emend Threshold by calling the 
Cae/Calc (line 17) function. This function returns � that is a 
measure of remaining scrubbing to be done to complete necessary 
scrubbing period. A high value for � shows that the scrubbing 
process is going well, and the scrubber can get relaxed about 
finishing the scrubbing process, thus increases the Threshold. 
Otherwise, for a low �, the scrubber finds out that the memory 
demand is high and Threshold value should be lowered to get the 
scrubbing job done in time. In addition, due to smaller amount of 
free time between requests in memory-intensive workloads, 
smaller number of successive scrub requests are sent to the 
memory for reducing the performance overhead of the scrubbing. 

C. Hardware Implementation of RLUT 

Figure 3 shows the overall micro-architecture of proposed 
RLUT which is a kind of frequency divider and generates refresh 
signals to be issued by the memory controller. The value of n is 
determined by the number of granularities of refresh periods. For 
example, eight refresh granularities (64ms, l28ms, 256ms to 
8192ms) can be encoded with 3 bits (n = 3). The address size of 
the RLUT equals to the number of clusters. A system with 32K 
clusters and eight refresh granularities needs a 96KB memory. 

The RLUT sweeps the entire clusters refresh-memory every 
64ms. When a cluster refresh period is read from the memory it is 
decoded into an m bits binary number by the Look up Table and 
the multiplexer selects one bit out of the m bits binary. The 
memory controller issues a refresh command for the cluster if the 
output of the multiplexer is one. Otherwise, it bypasses the 
refresh command for the cluster. The value of m is determined by 
the highest refresh period. For example, a maximum refresh 
period of 8192ms needs 128 bits (128*64ms = 8192ms). 
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Fig. 3 Hardware implementation of the RLUT 
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IV. RESULTS 

A. Simulation Setup 

For analyzing the impact of our proposed method on the 
performance and power of a DDR3 memory module, a similar 
retention time error model as in [10] is employed in DRAMSim2 
[11]. First, for considering effects of systematic process variation 
on the retention time of neighboring cells, a multivariate normal 
distribution with spherical spatial correlation structure is 
employed for each chip in R language. In our simulations, we use 
Continuous Time Markov Chains (CTMCs) for modeling two and 
multi-state VRT cells. We form the transition rate matrix of VRT 
cells using values provided by [5]. In this model, each cell spends 
a random amount of time T, which follows an exponential 
distribution in each state, and then it moves to the other states. 
Random paths are generated at 45°(, 65°( and 85°C using Prism 
[12]. At the beginning of simulation, line address of each VRT 
cell is selected by generating random line addresses with a 
uniform distributed random number generator to consider the fact 
that VRT cells are randomly scattered across the chips. For 
evaluation of the performance and power of our proposed 
method, we use Gem5 [13], a cycle accurate full system simulator 
for the x86-64 architecture with integrated DRAMSirn2 [11]. 
Table 2 shows configuration of our simulated system. We use 
multi-programmed workloads constructed from the SPEC 
CPU2006 benchmarks. Workloads are composed based on the 
memory intensity and row-buffer hit rate as determined in 
[14].CACTI [15] is used for calculation of the power in the 
RLUT and chip buffers. 

TABLE II. 

Component 

Processor 

Per Core $ 

Memory Controller 

DRAM Organization 

EVALUATION SYSTEM CONFIGURATION 

Specification 
X86, 03 cores, 8-core, 3 GHz 
64 KB Ll-I$ per core, 64 KB Ll-D$ per 
core, 4MB L2 shared (8 way), LRU 
FR-FCFS scheduling, open-page policy, 32 
entries read queue, 32 entries write queue 
2 channel, 2 ranks/channel, 8 banks/rank, 
Timings: DDR3-l600 

B. Effective Refresh Saving 

Figure 4 shows the number of refresh commands issued by 
the memory controller in our proposed method, and in the normal 
situation for a time period of 280 minutes in 32 GB DRAM 
module. Each cluster contains sixteen 2KB rows, and a 64KB 
buffer is assumed for each DRAM chip. Therefore, two (64/32=4) 
clusters can be tested simultaneously for different refresh periods. 
Also, each cluster is tested with five different data patterns which 
give the maximum coverage [5]. As shown, after a period of time 
the system reaches to its stable state. In the stable state, the 
number of cells that get lower refresh rates by the online tester 
balances with the number of rows that get higher refresh rates by 
the scrubber. 

The number of refresh commands that the memory controller 
issues in the stable state determines the total refresh power and 
performance overheads that can be mitigated. This settling value 
depends on four different factors: 1) the static retention time 
distribution of the cells, 2) hold-time distribution of the VRT cells 
in the high and low retention states, 3) temperature, and 4) the 
rate at which the online tester is testing the DRAM. 

The point at which the online tester cannot increase the 

Fig. 4 Number of issued refresh commands in 280 minutes at three 
different temperatures for two 32 GB DRAM modules normalized to the 
baseline system. Scrubbing Time=90s, Number of Clusters = 32K, 
Cluster Size = 32KB 
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Fig. 5 Transient response of the system to the variations in the temperature 

for a 32 GB DRAM. Scrubbing Time=90s, Number of Clusters = 32K, 

Cluster Size=32KB 

refresh period any further depends on the main and tail retention 
time distribution of the cells, and spatial correlation between the 
retention times of neighboring cells. As the weak cells, which 
belong to the tail distribution scatter more sparsely on the chip, 
fewer number of clusters can be refreshed with lower rates. 

As shown in Fig. 4, the system reaches its stable state in a 
shorter time at higher temperatures. This can be explained by 
considering the fact that at higher temperatures, tests are done at 
higher rates because of lower retention time of cells and smaller 
intervals between tests. In addition, VRT cells have a higher rate 
of transition between retention time states. As a result, cells with 
VRT can be found more easily. Also, figure 4 shows more 
instability in the number of refresh commands at higher 
temperatures, e.g., 85 DC. This is due to higher transition rate of 
the VRT cells at high temperatures. 

C. Transient Response 

Figure 5 shows transient response of the system to the 
fluctuations in the temperature. Lee et al. measured the DRAM 
ambient temperature in a server cluster and desktop system 
running a memory-intensive benchmark, and found that 
temperature never exceeds 34°C and 50°C, and never changing by 
more than 0.1 per second [16]. Therefore, temperature variation 
rate and interval of 0.1 per second and 35°C to 50°C are selected 
for our experiments, respectively. 

As shown, the scrubber in the role of a feedback detects 
errors and increases refresh rate to prevent accumulation of errors 
which could result in uncorrectable errors and system failure. 
Scrubbing period determines how fast the system can respond to 
the transient disturbances. 
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Fig. 7 The Energy-Delay Product comparison between the proposed 
method and the A VAT AR at 45°C 

D. Power and Performance Evaluation 

Figure 6 shows perfonnance improvement of our proposed 
method relative to the baseline system which employs JEDEC­
specified 64ms refresh, and is protected by a SECDED ECC. Our 
proposed method improves the perfonnance by 6%, 13%, and 23% at 
45°C for 32GB, 64GB, and 128GB sizes, respectively. 

The total energy for refreshing an 8GB DIMM once is 
approximately I.ImJ, whereas the energy for one round of scrubbing 
is approximately 16ImJ [1]. However, in the worst case (scrub period 
of90 seconds) the scrub energy is consumed less frequently (64ms vs. 

90s) than the refresh energy. Figure 7 compares the Energy-Delay 
Product (EDP) of our proposed method with AVATAR-I, and No 
Refresh cases. In the No Refresh case, EDP can be reduced by 10%, 
18%, and 34% for 32GB, 64GB, and 128GB nodes, respectively. 
Whereas, our proposed method reduces EDP by 7%, 13%, and 27% 
at 32GB, 64GB, and 128GB nodes, respectively. 

As expected, less power and perfonnance overhead of refresh can 
be mitigated at higher temperatures due to lower retention time of the 
DRAM cells and higher transition rate of the VRT cells. Also, for 
ensuring high data integrity, scrubbing should be applied faster at 
higher temperatures which result in less reduction in the refresh 
overheads. 

Fig. 6 Probability of occurring an uncorrectable error in a system 
protected by a SECDEC (8B) ECC for a 32GB DRAM 

E. Failure Rate Analysis 

Figure 8 shows the probability of occurring an uncorrectable 
errors wiili respect to the scrubbing period. We assume iliat ilie 
VRT cells are randomly scattered throughout the memory [1], and 
an uncorrectable error always result in system failure. 

As shown, temperature can reduce reliability of the system by 
four orders of magnitude even at a high rate of scrubbing (i.e., 90 
seconds). As temperature rises, rate of transition to lower states 
in cells with VRT increases and as a result, higher rate of error is 
observed. Therefore, for more reliable operation, higher rate of 
scrubbing is required. 

Aliliough, scrubbing memory at high rates helps us to 
increase reliability of the system, still not all the applications need 
this much of reliability. In fact, some dedicated applications 
refresh can be disabled wiili negligible impact on ilie perfonnance 
[17]. 

V. CONCLUSSION 

In this paper, we introduced an online profiler based on the 
multi-rate refresh technique for reducing the refresh overhead on the 
perfonnance and power in the presence of VRT cells and other 
environment dependent variables. We proposed a heuristic approach 
for reducing impact of the memory scrubbing on the perfonnance. 
Our proposed online profiler consisting of the online tester and the 
scrubber reduces refresh overhead on perfonnance by 6%, 13%, and 
25%, and EDP by 13%, and 27% for 32GB, 64GB, and 128GB 
DRAM modules, respectively. 

REFERENCES 

[ 1] M. K. Qureshi, et al.,"AVATAR: A Variable-Retention-Time (VRT) 
Aware Refresh for DRAM Systems," DSN, vol. 2, no. 4Gb, p. 20, 2015. 

[2] S. Baek, et al.,"Refresh Now and Then," IEEE Trans. Comput., vol. PP, 
no. 99, p. 1,2013. 

[3] J. Liu, et al.,"RAIDR: Retention-aware intelligent DRAM refresh," in 
ISCA, 2012, pp. 1-12. 

[4] R. K. Venkatesan, et al.,"Retention-aware placement in DRAM (RAPID): 
Software methods for quasi-non-volatile DRAM," in HPCA, 2006, pp. 
155-165. 

[5] S. Khan, et al.,"The efficacy of error mitigation techniques for DRAM 
retention failures," SIGMETRICS, pp. 519-532, 2014. 

[6] J. Liu, et al.,"An experimental study of data retention behavior in modem 
DRAM devices: Implications for retention time profiling mechanisms," 
ISCA, vol. 41, no. 3, p. 60, 2013. 

[7] H. Kim, et al.,"Characterization of the variable retention time in dynamic 
random access memory," IEEE Trans. Electron Devices, vol. 58, no. 9, 
pp. 2952-2958, 201 1. 

[8] S. S. Mukherjee, et al.,"Cache scrubbing in microprocessors: Myth or 
necessity?," in PRDC, 2004, pp. 37-42. 

[9] Y. K. Y. Kim, et al.,"ATLAS: A scalable and high-performance 
scheduling algorithm for multiple memory controllers," HPCA, 2010. 

[ 10] C. Weis, et al.,"Retention time measurements and modelling of bit error 
rates of WIDE I/O DRAM in MPSoCs," in DATE, 2015, pp. 495-500. 

[ 11] P. Rosenfeld, et al.,"DRAMSirn2: A cycle accurate memory system 
simulator," Com put. Archil. Lett., vol. 10, no. 1, pp. 16-19,201 1. 

[ 12] M. Kwiatkowska, et al.,"PRISM: Probabilistic symbolic model 
checker," Springer, 2002, pp. 200-204 . 

[ 13] N. Binkert, et al.,"The gem5 simulator," ACM SIGARCH Comput. 
Archil. News, vol. 39, no. 2, pp. 1-7,201 1. 

[ 14] M. K. Jeong, et al.,"Balancing DRAM locality and parallelism in shared 
memory CMP systems," HPCA, pp. 53--64,2012. 

[ 15] S. Thoziyoor, et al.,"Cacti 5.3," HP Lab. Palo Alto, CA,2008. 
[ 16] D. Lee, et al.,"Adaptive-latency DRAM: Optimizing DRAM timing for 

the common-case," in HPCA, 2015,2015, pp. 489-50 1. 
[ 17] M. Jung, et al.,"Omitting Refresh: A Case Study for Commodity and 

Wide I/O DRAMs," in MEMSYS, 2015, pp. 85-91. 

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on December 27,2020 at 04:58:27 UTC from IEEE Xplore.  Restrictions apply. 


